The reference materials on Root Cause Analysis (RCA) from ECRI’s Healthcare Risk Control describe a variety of analytic techniques for performing an RCA. One common technique is shown here using causal tree analysis (CTA). Following is a case study of a potentially serious injury from a surgical pneumatic tourniquet. The cause of the adverse event was related to errors on the part of several members of the surgical team. Accompanying this first case is a completed CTA diagram. Such diagrams on RCA applied to healthcare technology adverse events are useful in examining the underlying causes of an incident. The causal analysis was performed using the coding and descriptors in the modified Eindhoven Classification Model (ECM) causal coding system (Battles and Shea 001).

The applicable excerpts from the modified ECM are described in a key at the bottom of the diagrams to assist in interpretation of the CTA (also frequently referred to as a fault tree analysis) that follows the tourniquet case abstract. For self-education or training in filling out a CTA, causal tree diagrams are included for the other cases presented in this section. Such analyses could also be pursued with the numerous case studies presented in other handouts.

CTA involves reasoning from the general to the specific by working backward through time to examine preceding events leading to an incident. This method studies potential system failures. It allows for analysis of situations in which a negative event will not occur unless several subevents occur first. Relationships between events that have an interaction with each other can be more clearly shown. CTA is considered proactive RCA because the process seeks to identify the origin(s) of possible direct proximate causes for an incident and, once this is accomplished, to find ways to avoid these origin(s). A fault tree is a graphic model that displays the combination of equipment failures, human errors, and/or management system failures that result in an incident. The tree starts with an undesired top event (i.e., accident, incident, management system failure) and is subsequently broken down into contributory events. A fault tree uses logic symbols to find the basic events that will cause the incident to occur.
Case 1: Surgery for Traumatic Amputation

A patient underwent emergency surgery at a tertiary care teaching hospital for arm revascularization following traumatic amputation. The 13-hour procedure was performed by an emergency replantation team that had been established by the hospital for such emergencies. Team members included six surgeons, two anesthesiologists, four scrub nurses, three circulating nurses, and two surgical technicians. Members of this team had worked together in smaller groups on nonemergent surgical procedures for several years but rarely worked as an assembled emergency trauma surgery team.

After autologous vein harvesting from one of the patient’s legs for use in revascularization of the arm, the microprocessor-controlled pneumatic leg tourniquet was not deflated despite an order by the vascular surgeon to do so. At that time, the tourniquet had been inflated for 25 minutes at a pressure of 250 mm Hg. An hour later, when the vascular surgeon checked the closure of the vein-harvesting incision site, she saw that the leg was still exsanguinated and discovered that the tourniquet was still inflated. The tourniquet had remained inflated for more than 90 minutes. Although the 60-minute alarm on the tourniquet triggered, it was not heard because the volume was adjusted below an audible level.

In general surgery at this hospital, the anesthesiologist is responsible for tourniquet inflation and deflation and for monitoring the inflation time. In emergency trauma surgery, these tourniquet responsibilities are delegated to a circulating nurse. Although the nurse knew her duties for the surgical tourniquets in this case and had heard the request for the tourniquet to be deflated, that duty was not routine for her and was not carried out in the rush of the first three hours of the surgery. The tourniquet was removed, and the leg was allowed to passively perfuse. Despite concerns over the potential for development of compartment syndrome, the affected leg recovered and was not harmed. The event was reported as an incident by the circulating nurse. Initial suspicions that the tourniquet had malfunctioned proved incorrect during subsequent investigation. This is classified as a close-call event because the patient’s leg would have been seriously injured or lost if the tourniquet remained inflated for the duration of the long procedure.
Case 1 Causal Tree Analysis

No-harm Event

Surgical tourniquet almost left inflated on leg used for autologous vein harvesting for duration of a lengthy trauma surgery

&

Patient’s condition required emergency replantation surgical team

&

Some team member responsibilities were different than during general surgery

&

Team had little experience operating as a unit

&

Attention of circulating nurse responsible for tourniquet was diverted by hectic trauma surgery

&

Nurse did not deflate tourniquet upon request

&

Nurse’s duties were not routine for emergency surgery

&

Volume on tourniquet could be set too low

&

Operating vascular surgeon did not check vein harvest site for perfusion or bleeding until 1 hour after ordering

&

One of two vascular surgeons was delayed in arrival to surgery

OK

OP

HSS

HRC

TD

HRC

HRM

OK = Latent Error, Organizational, Transfer of Knowledge
OP = Latent Error, Organizational, Protocols/Procedures
HSS = Active Errors, Skills-based Behavior, Slip
HRC = Active Errors, Rule-based Behavior
TD = Latent Errors, Technical, Design
HRM = Active Errors, Rule-based Behavior, Monitoring
(See Battles and Shea 2001 for detailed descriptions.)

©2006 ECRI
Contact: Mark E. Bruley, Vice President, Accident and Forensic Investigation, ECRI
E-mail: mbruley@ecri.org
Case 2: Air Embolism During Apheresis

An on-call physician was preparing an apheresis machine in an intensive care unit to perform plasma exchange (PE) therapy on a critically ill patient. Plasma exchange was performed at the hospital only several times per year. The patient was to undergo plasma exchange with human albumin solution (HAS) over the course of a 90 minute treatment, with 3 L of plasma to be removed and replaced with 2.5 L of HAS. As nursing staff was in short supply, the physician was aided by a medical resident physician. The resident had no experience with PE therapy or apheresis equipment. A dual lumen catheter was placed in the femoral vein to provide the ports for the blood supply and return tubing that lead to and from the machine.

The patient was anxious and was fidgeting with and tugging on the femoral blood lines leading to and from the machine. In the haste to begin therapy, a second check of the blood lines and connectors was not performed.

Just as treatment began, the blood level in drip chamber of the tubing set on the machine dropped and triggered an alarm that stopped the treatment. The physician raised the blood level in the drip chamber by pulling back on a 50cc syringe attached to one of the chamber’s ports. As the blood level rose to an appropriate level, the machine automatically resumed treatment at which time a large bolus of air was seen moving toward the patient in the blood return line. The physician halted the machine before any air reached the patient.

The blood lines were checked for security. It was found that the patient had inadvertently dislodged the return line from a safety clamp on the machine. In addition, the Luer connector at the junction of the blood return line and the femoral catheter was found to be loose and had blood to leak out at the initiation of treatment. This leak also allowed air to be drawn into the return line during drip chamber aspiration. The air could not have been drawn into the tubing if the tubing been seated in the alarm-activated safety clamp. After checking for security of the tubing and connectors, treatment proceeded uneventfully. The volume of air in the large bore return blood line was approximately 50ml. Had that bolus been introduced into the patient the result of this near miss could have been fatal.
Case 2 Causal Tree Analysis

Near Miss Event

Intensive care patient almost infused with large bolus of air during plasma exchange treatment with apheresis machine

OK = Latent Error, Organizational, Transfer of Knowledge
OP = Latent Error, Organizational, Protocols/Procedures
HSS = Active Errors, Skills-based Behavior, Slip
HRC = Active Errors, Rule-based Behavior
TD = Latent Errors, Technical, Design
HRM = Active Errors, Rule-based Behavior, Monitoring
(See Battles and Shea 2001 for detailed descriptions.)
Case 3: Fetal Monitoring

A patient in labor at a small rural hospital was being monitored with an ultrasonic fetal monitor for a number of hours before delivery of the baby girl in the early hours of the morning. The fetal monitoring strip showed no signs of fetal distress before delivery as judged by the resident obstetrician. The patient was the only one in the hospital’s labor and delivery ward that night and was closely monitored by the resident.

At delivery, having been delivered with a tight (nuchal) cord the baby was determined to be compromised with Apgar scores of 2, 5, 5. The infant recovered well very soon after delivery and was diagnosed as healthy upon discharge the following day. Immediately subsequent to delivery, the fetal monitor continued to print out a fetal heart rate tracing for approximately two minutes, until it was turned off. Based on the lack of any evident fetal distress before delivery and upon the subsequent tracing of the fetal monitor after delivery, it was questioned whether the fetal monitor was working properly.

Review of the fetal monitoring strips found them to the reasonably unremarkable with just a few decelerations with compensatory accelerations. Subsequent testing of the monitor revealed it to be working satisfactorily. The suspicion that the monitor was not working was based on the initially poor fetal Apgar scores and the continuing “fetal tracings” after delivery. It was noted that the post-delivery suspect fetal tracing was at a baseline heart rate of approximately 130 beats per minute. This contrasts with the fetal heart rate of 150 beats per minute that was seen throughout most of the rest of the strip until about 5 minutes before delivery where the rate was approximately 135-140. It was determined that placement of the ultrasonic transducer on the mother’s abdomen had not been checked during the later stages of labor. The two minutes of 130 beats per minute heart rate seen on the strip immediately after delivery of the infant, as well as the 135-140 seen just prior to delivery, was the maternal heart rate presented by the mother’s pulsing aorta.

The resident obstetrician had not recognized that toward the end of labor that the maternal and fetal heart rates were virtually identical and had not checked the placement of the ultrasonic transducer. Had the fetal distress during delivery been more prolonged, this no-harm event could have had a much more problematic outcome for the child.
Case 4 Causal Tree Analysis

No-harm Event

Infant almost compromised at delivery by misplaced ultrasonic fetal monitor sensor

OK = Latent Error, Organizational, Transfer of Knowledge
OP = Latent Error, Organizational, Protocols/Procedures
HSS = Active Errors, Skills-based Behavior, Slip
HRC = Active Errors, Rule-based Behavior
TD = Latent Errors, Technical, Design
HRM = Active Errors, Rule-based Behavior, Monitoring
(See Battles and Shea 2001 for detailed descriptions.)